
MATH20132 Calculus of Several Variables. 2019-20

Solutions to Problems 5: C1-functions and more

C1-scalar-valued functions

1. Define the function f : R3 → R by f(x) = x sin (xyz) + exp (yz) where
x = (x, y, z)T . Prove that f is a Fréchet differentiable function by showing
that f is C1 on R3.

Solution The partial derivatives of f are

∂f

∂x
(x) = sin (xyz) + xyz cos (xyz) ,

∂f

∂y
(x) = x2z cos (xyz) + z exp (yz) ,

∂f

∂z
(x) = x2y cos (xyz) + y exp (yz) .

The xyz, x2z, etc. terms are polynomials in the variables of x and so are con-
tinuous. The sin, cos, exp are functions from R to R, known to be continuous
from previous analysis courses. Hence, by the Composite Rule along with
the Product and Sum Rules for continuous functions, the partial derivatives
above are continuous on R3. Hence f is C1 on R3 and thus Fréchet differen-
tiable on R3.

2. Define the function f : R3 → R by f(x) = sin (xy2z3) where x = (x, y, z)T .

i. Prove that f is Fréchet differentiable at a = (π, 1, −1)T .

ii. Find the directional derivative dvf(a) where v = (2/3, 1/3, −2/3)T .

Solution i. For a general x ∈ R3 the gradient vector is

∇f(x) =

 y2z3 cos (xy2z3)

2xyz3 cos (xy2z3)

3xy2z2 cos (xy2z3)

 .

The components are continuous on R3 hence f is a C1-function and thus
Fréchet differentiable on R3 and hence at the given a.
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ii. It is important to make the observation that f is Fréchet differentiable
because only if you know f is Fréchet differentiable at a can you say

dvf(a) = ∇f(a) • v =
1

3

 − cos (−π)

−2π cos (−π)

3π cos (−π)

 •
 2

1

−2



=
1

3

 1

2π

−3π

 •
 2

1

−2


=

2 + 8π

3
.

The following was Questions 1& 2 on Sheet 4 but now, with C1-functions,
we can give a quicker solution.

3. a. By using partial differentiation find the gradient vectors of

i. f : R2 → R,x 7−→ x(x+y) and

ii. g : R2 → R,x 7−→ y(x−y)

and show they are everywhere Fréchet differentiable. Find the directional
derivatives of f and g at a = (1, 2)T in the direction v = (2,−1)T /

√
5,

justifying your method.

b. Using partial differentiation find the gradient vector of h : R3 → R by
x 7−→ xy + yz + xz where x = (x, y, z)T , and show it is everywhere Fréchet
differentiable. Find the directional derivative of f at a = (1, 2, 3)T in the
direction v = (3, 2, 1)T /

√
14, justifying your method.

Solution a. i. ∇f(x) = (2x+ y, x)T , ii. ∇g(x) = (y, x− 2y)T

All the terms of both gradient vectors are polynomials which are every-
where continuous hence both f and g are C1-functions and thus everywhere
Fréchet differentiable.

Since f and g are Fréchet differentiable we have

dvf(a) = ∇f(a) • v =
1√
5

(
4
1

)
•
(

2
−1

)
=

7√
5
,

dvg(a) = ∇g(a) • v =
1√
5

(
2
−3

)
•
(

2
−1

)
=

7√
5
.
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Hopefully they agree with your answers to Question 1 on Sheet 3.

b. ∇h(x) = (y + z, x+ z, x+ y)T . All the terms of the gradient vector are
polynomials which are everywhere continuous hence h is a C1-function and
thus everywhere Fréchet differentiable. Therefore we are allowed to say

dvh(a) = ∇h(a) · v =
1√
14

 5
4
3

 •
 3

2
1

 =
26√
14
.

Hopefully this agrees with your answer to Question 3 on Sheet 3.

4. (Tricky) Recall:

f is C1 at a =⇒ f is Fréchet differentiable at a =⇒ f continuous at a.

The contrapositive of this is

f not conts at a =⇒ f not F-differentiable at a =⇒ f is not C1. (1)

Define f : R2 → R by

f(x) =
xy

x2 + y2
if x 6= 0; with f(0) = 0.

This was shown in Question 11ii on Sheet 1 to not be continuous at 0. So,
as not to contradict (1), prove that f is not C1 at 0, i.e. that the partial
derivatives are not continuous at 0.

Solution Partial differentiation gives

∂f

∂x
(x) =

y (y2 − x3)
(x2 + y2)2

, (2)

for x 6= 0. Going back to the definition gives

∂f

∂x
(0) = lim

t→0

f(0 + te1)− f(0)

t
= lim

t→0

1

t

t× 0

t2 + 02
= 0.

To be C1 at 0 means that ∂f(x) /∂x is continuous at 0. Look at the limit
of ∂f(x) /∂x as x→ 0 along the y-axis, i.e. x = te2 as t→ 0. For then, by
(2) ,

∂f

∂x
(te2) =

t3

t4
=

1

t
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which has no limit as t → 0 and certainly doesn’t equal 0 = ∂f(0) /∂x.
Hence the partial derivative w.r.t. x is not continuous.

The argument for the partial derivative w.r.t. y is identical but this is
not needed; as soon as one partial derivative is not continuous we can deduce
that f is not C1.

C1-vector-valued functions

5. Find the Jacobian matrices of the following functions, show that the
functions are everywhere Fréchet differentiable and then find the directional
derivatives at the given point a in the direction v. In this way check your
answers to Questions 5 & 7 on Sheet 3.

i. f
(

(x, y, z)T
)

= (xy, yz)T , a = (1, 3,−2)T and v = (−1, 1,−2)T /
√

6,

ii. f
(

(x, y)T
)

= (xy2, x2y)
T

, a = (2, 1) and v = (1,−1)T /
√

2.

Solution i. The Jacobian matrix is

Jf(a) =

(
y x 0

0 z y

)
x=a

=

(
3 1 0

0 −2 3

)
.

All the terms in Jf(x) are polynomials and thus continuous on R3 and
thus f is a C1-function and hence everywhere Fréchet differentiable. Since,
for a Fréchet differentiable function, dvf (a) = Jf (a)v we have

dvf(a) =
1√
6

(
3 1 0

0 −2 3

) −1
1
−2

 =
1√
6

(
−2
−8

)
= −

√
2

3

(
1
4

)
.

This agrees with Question 5 on Sheet 3.

ii. The Jacobian matrix is

Jf(a) =

(
y2 2xy

2xy x2

)
x=a

=

(
1 4

4 4

)
.

All the terms in Jf(x) are polynomials and thus continuous on R2 and
thus f is a C1-function and hence everywhere Fréchet differentiable. Since,
for a Fréchet differentiable function, dvf (a) = Jf (a)v we have

dvf(a) =
1√
2

(
1 4
4 4

)(
1
−1

)
=

1√
2

(
−3
0

)
= − 3√

2

(
1
0

)
.
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This agrees with Question 7 on Sheet 3.

Chain Rule

6. Let

f (x) =

(
x2y

xy2

)
and g (u) =

(
u+ v
u− v

)
,

for x = (x, y)T and u = (u, v)T .

i. Calculate f
(
g (u)

)
and thus find the Jacobian matrix J (f ◦ g) (a) where

a = (1,−2)T .

ii. Alternatively find Jf(b) , with b = g (a), and Jg (a) and use the Chain
Rule to calculate J (f ◦ g) (a)

Solution i The composition function f ◦ g is

f
(
g (u)

)
=

(
(u+ v)2 (u− v)

(u+ v) (u− v)2

)
=

(
u3 + u2v − uv2 − v3

u3 − u2v − uv2 + v3

)
Thus

J (f ◦ g) (a) =

(
3u2 + 2uv − v2 u2 − 2uv − 3v2

3u2 − 2uv − v2 −u2 − 2uv + 3v2

)
u=a

=

(
−5 −7

3 15

)
ii First calculate b = g

(
(1,−2)T

)
= (−1, 3)T . Then

Jf (b) =

(
2xy x2

y2 2xy

)
x=b

=

(
−6 1

9 −6

)
.

Also

Jg (u) =

(
1 1
1 −1

)
,

for all u, and in particular u = a.

The Chain Rules states, in terms of Jacobian matrices, that J (f ◦ g) (a) =
f
(
g (a)

)
Jg (a). Here

Jf
(
g (a)

)
Jg (a) =

(
−6 1

9 −6

)(
1 1
1 −1

)
=

(
−5 −7

3 15

)
.
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The same answer as in part i.!

7. Use the Chain Rule to find the Fréchet derivative of f ◦ g at the given
point a for each of the following.

i. i. With x = (x, y)T , u = (u, v)T ∈ R2,

f(x) =

(
x2y

x− y

)
and g (u) =

(
3uv

u2 − v

)
,

at a = (2, 1)T .

ii. ii. With x = (x, y, z)T ∈ R3, u = (u, v)T ∈ R2,

f(x) =

(
xy

yz

)
and g (u) =

 uv2 − v
u2

1/uv

 ,

at a = (2, 1)T .

Solution The g in part ii is not Fréchet differentiable at 0, but otherwise
all functions are differentiable at all points in which we are interested. Thus,
by the Composition Rule, f ◦ g is differentiable. Therefore d (f ◦ g)a (t) =
J (f ◦ g) (a) (t) for all t ∈ R2. The Chain Rule for matrices states that
J (f ◦ g) (a) = Jf (b) Jg (a) where b = g (a) and it is this product we will
calculate.

i. First, b = g (a) = (6, 3)T . Then

Jg (a) =

(
3v 3u
2u −1

)
u=a

=

(
3 6
4 −1

)
.

And

Jf(b) =

(
2xy x2

1 −1

)
x=b

=

(
36 36
1 −1

)
.

Thus

(f ◦ g) (a) =

(
36 36
1 −1

)(
3 6
4 −1

)
=

(
252 180
−1 7

)
.
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The question asked you to find the Fréchet derivative which is, with t =
(s, t)T ∈ R2,

d (f ◦ g)a (t) =

(
252 180
−1 7

)(
s
t

)
=

(
252s+ 180t

−s+ 7t

)
.

ii. First, b = g (a) = (1, 4, 1/2)T . Then

Jg (a) =

 v2 2uv − 1

2u 0

−1/u2v −1/uv2


u=a

=

 1 3

4 0

−1/4 −1/2


And

Jf(x) =

(
y x 0

0 z y

)
x=b

=

(
4 1 0

0 1/2 4

)
.

Thus

(f ◦ g) (a) =

(
4 1 0

0 1/2 4

) 1 3

4 0
−1/4 −1/2

 =

(
8 12
1 −2

)
.

The question asked you to find the Fréchet derivative which is, with t =
(s, t)T ∈ R2,

d (f ◦ g)a (t) =

(
8 12
1 −2

)(
s
t

)
=

(
8s+ 12t

s− 2t

)
.

8. Consider the Chain Rule in the case

Rp g→ Rn f→ R,

so f is scalar-valued. Assume g is Fréchet differentiable at a ∈ Rp and f is
Fréchet differentiable at b = g (a) ∈ Rm. The Chain Rule says that f ◦ g is
Fréchet differentiable at a and J(f ◦ g) (a) = Jf(b) Jg(a).

Think of the coordinates in Rp as xi for 1≤ i≤ p, while in Rn they will
be yj for 1≤ j ≤n. Show that the Chain Rule can be written as

∂f ◦ g
∂xi

(a) =
n∑

k=1

∂f

∂yk
(b)

∂gk

∂xi
(a) ,
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for 1≤ i≤p.

Solution Since f and f◦g are scalar-valued functions their Jacobian matrices
consist of only one row. In particular

Jf(b) = (d1f(b) , ..., dnf(b)) =

(
∂f

∂y1
(b) , ...,

∂f

∂yn
(b)

)
,

Similarly

J(f ◦ g) (a) = (d1 (f ◦ g) (a) , ..., dp (f ◦ g) (a))

=

(
∂ (f ◦ g)

∂x1
(a) , ...,

∂ (f ◦ g)

∂xp
(a)

)
.

From the definition of matrix multiplication the Chain Rule J(f ◦ g) (a) =
Jf(b) Jg(a) can be reinterpreted as saying that di (f ◦ g) (a), the i-th coordi-
nate of J(f ◦ g) (a), equals the matrix product of Jf(b) with the i-th column
of Jg(a), which is dig(a) . This can be written in a number of ways.

First, for 1≤ i≤p,

di (f ◦ g) (a) = Jf(b) dig (a) =
n∑

k=1

dkf(b) (dig(a))k =
n∑

k=1

dkf(b) dig
k(a) .

Or, with the alternative way of writing the partial derivatives,

∂f ◦ g
∂xi

(a) =
n∑

k=1

∂f

∂yk
(b)

∂gk

∂xi
(a) .

Extremal values of dvf(a).

Here we find maxv:|v|=1 dvf(a) and minv:|v|=1 dvf(a), that is the directions
of maximum and mimimum rate of change of f as we move away from a.

9. Suppose that f : U ⊆ Rn → R is Fréchet differentiable on U and a ∈ U.
Prove that the directional derivative dvf(a) has a

i. maximum value of |∇f(a)| when v is in the direction of ∇f(a) and

ii. a minimum value of − |∇f(a)| when v is in the direction of −∇f(a).
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Hint for any vectors we have a•b = |a| |b| cos θ where θ is the angle between
the vectors a and b.

Solution Since f is Fréchet differentiable on U and a ∈ U we have from the
notes that for a unit vector v, dvf(a) = ∇f(a) • v. Thus, by the hint in the
question,

dvf (a) = ∇f(a) • v = |∇f(a)| |v| cos θ = |∇f(a)| cos θ,

since |v| = 1. Therefore, since −1 ≤ cos θ ≤ 1,

− |∇f(a)| ≤ dvf (a) ≤ |∇f(a)| . (3)

i. The upper bound is attained when the angle between v and ∇f(a) is 0,
i.e. when v is in the direction of ∇f(a), which, since v is a unit vector, is
when v = ∇f(a) / |∇f(a)|. Then, for this value of v,

dvf (a) = ∇f(a) • ∇f(a)

|∇f(a)|
=
|∇f(a)|2

|∇f(a)|
= |∇f(a)| .

ii The lower bound in (3) is attained when the angle between v and ∇f(a) is
π, i.e. when v is in the direction of −∇f(a), which, since v is a unit vector,
is when v = −∇f(a) / |∇f(a)|. Then, for this value of v,

dvf (a) = −∇f(a) • ∇f(a)

|∇f(a)|
= −|∇f(a)|2

|∇f(a)|
= − |∇f(a)| .

10. Suppose the temperature at a point (x, y, z)T in a metal cube is given
by

T = 80− 60xe−
1
20(x2+y2+z2),

where the centre of the cube is taken to be (0, 0, 0)T . In which direction from
the origin is the rate of change of temperature greatest? The least?

Solution For simplicity let r(x) = (x2 + y2 + z2) /20. The gradient of T is

∇T (x) =

 −60e−r(x) + 6x2e−r(x)

6xye−r(x)

6xze−r(x)

 so ∇T (0) =

 −60
0
0

 .

Hence the greatest rate of change is in the x-axis direction, (−1, 0, 0)T , the
least in the (1, 0, 0)T direction.
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Solutions to Additional Questions 5

11 Define the function f : R3 → R by x 7→ xy2z.

i. Show that f is a C1-function on R3.

ii. Calculate ∇f(a) • v with a = (1, 3,−2)T and v = (−1, 1,−2)T /
√

6.
Explain any similarity with Question 4 Sheet 3.

Solution i. The gradient vector is

∇f(x) =

 y2z
2xyz
xy2

 .

ii.

∇f(a) • v =
1√
6

 −18
−12

9

 •
 −1

1
−2

 = − 12√
6
.

This is the same as dvf(a) which you were asked to calculate in Question 4
on Sheet 3. They are the same because f is, by part i., a C1-function and thus
Fréchet differentiable at a. This is necessary to justify dvf(a) = ∇f(a) • v.

12. Let f : R2 → R be given by

f(x) =
sin (x2y2)

x2 + y2
if x = (x, y)T 6= 0; f (0) = 0.

i. Find the partial derivatives of f at all points x ∈ R2.

Hint For x = 0 you will have to return to the definition of partial
derivative.

ii. Prove that f is a C1-function on R2 with Fréchet derivative df0 = 0 :
R2 → R at the origin.

Hint You may make use of |sin θ| ≤ |θ| for all θ.

Solution i. Partial differentiation gives

∂f

∂x
(x) =

2xy2 cos (x2y2)

x2 + y2
− 2x sin (x2y2)

(x2 + y2)2
,

∂f

∂y
(x) =

2x2y cos (x2y2)

x2 + y2
− 2y sin (x2y2)

(x2 + y2)2
,
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for x 6= 0. For x = 0 we return to the definition of differentiation,

∂f

∂x
(0) = lim

t→0

f(te1)

t
= lim

t→0

0

t3
= 0.

Similarly
∂f

∂y
(0) = lim

t→0

f(te2)

t
= lim

t→0

0

t3
= 0.

ii. The partial derivatives given in part i for x 6= 0 are continuous wherever
they are defined, i.e. x 6= 0. For x = 0 we have to return to the definition of
continuity, that the limit equals the value of the function. Consider∣∣∣∣∂f∂x (x)− ∂f

∂x
(0)

∣∣∣∣ =

∣∣∣∣2xy2 cos (x2y2)

x2 + y2
− 2x sin (x2y2)

(x2 + y2)2
− 0

∣∣∣∣
≤ 2 |x| |y|2

|x|2
+

2 |x| |x2y2|
|x|4

using the triangle inequality along with |cos θ| ≤ 1 and |sin θ| ≤ |θ| for all θ.
Then recalling that |x| , |y| ≤ |x| we find that∣∣∣∣∂f∂x (x)− ∂f

∂x
(0)

∣∣∣∣ ≤ 4 |x| → 0

as x→ 0. Thus,

lim
x→0

∂f

∂x
(x) =

∂f

∂x
(0) ,

which is the definition that ∂f(x) /∂x is continuous at x = 0. Similarly for
∂f(x) /∂y. Hence f is a C1-function at x = 0 and thus on all of R2.

Therefore f is Fréchet differentiable on R2 and in particular at 0. This
implies that

df0(v) = ∇f(0) • v =

(
∂f(0) /∂x

∂f(0) /∂y

)
• v =

(
0

0

)
• v = 0.

True for all unit vectors v means that df0 = 0 : R3 → R. (That is, df0 is the
linear map which send all vectors from R3 to 0 in R.)

13. Further practice on the Chain Rule Use the chain rule to find the deriva-
tive of f ◦ g at the point c for each of the following. Give your answers in
the form d (f ◦ g)c (t) .
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i. f
(
(x, y)T

)
= (x2y, x−y)T , g

(
(u, v)T

)
= (3uv, u2−4v)T , c = (1,−2)T ,

ii. f
(
(x, y, z)T

)
= (4xy, 3xz)T , g

(
(u, v)T

)
= (uv2 − 4v, u2, 4/uv)

T
, c =

(−2, 3)T

iii. f
(
(x, y)T

)
= (3x+4y, 2x2y, x−y)T , g

(
(u, v, w)T

)
= (4u−3v+w, uv2)T ,

c = (1,−2, 3)T .

Solution The Chain Rule states that d (f ◦ g)c = dfg(c) ◦ dgc, so

d (f ◦ g)c (t) = dfg(c) (dgc (t)) .

i. For x = (x, y)T ,u = (u, v)T and t = (s, t)T ∈ R2 we have

dfx (u) = Jf (x)u =

(
2xy x2

1 −1

)(
u
v

)
.

and

dgc(t) =

(
3v 3u

2u −4

)
(1,−2)T

(
s
t

)
=

(
−6 3

2 −4

)(
s
t

)
=

(
−6s+ 3t

2s− 4t

)
.

Next g (c) = (−6, 9)T so

dfg(c) (dgc(t)) =

(
2xy x2

1 −1

)
(−6,9)T

(
−6s+ 3t

2s− 4t

)
=

(
−108 36

1 −1

)(
−6s+ 3t

2s− 4t

)

=

(
720s− 468t

−8s+ 7t

)
.

ii. For x = (x, y, z)T ,u = (u, v)T and t = (s, t)T ∈ R2 we have

dfx (u) =

(
4y 4x 0

3z 0 3x

)(
u
v

)
.

and

dgc(t) =

 v2 2uv − 4

2u 0

−4/u2v −4/uv2


(−2,3)T

t =

 9 −16

−4 0

−1/3 2/9

 t =

 9s− 16t

−4s

−s/3 + 2t/9

 .
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Next g
(
(−2, 3)T

)
= (−30, 4, −2/3)T so

fg(c) (dgc(t)) =

(
4y 4x 0

3z 0 3x

)
x=(−30,4,−2/3)T

dgc(t)

=

(
16 −120 0

−2 0 −90

) 9s− 16t

−4s

−s/3− 2t/9


=

(
624s− 256t

12s+ 42t

)
.

iii. An alternative approach is to not mention t until the end but, instead,
look at the Jacobian matrices.

Jg (c) =

(
4 −3 1

v2 2uv 0

)
u=c

=

(
4 −3 1
4 −4 0

)
.

Next g (c) = (13, 4)T . Then

Jf(g(c)) =

 3 4

4xy 2x2

1 −1


x=(13,4)T

=

 3 4

208 338

1 −1

 .

Multiplying together,

Jf(g(c)) Jg(c) =

 3 4

208 338

1 −1

( 4 −3 1

4 −4 0

)
=

 28 −25 3

2184 −1976 208

0 1 1

 .

Now introduce t ∈ R3 so t = (r, s, t)T say. Then

d (f ◦ g)c (t) =

 28 −25 3

2184 −1976 208

0 1 1

 r
s
t

 =

 28r − 25s+ 3t

2184r − 1976s+ 208t

s+ t



14. Revisit Question 17iii on Sheet 3. Define the functions f : R2 → R3

by (x, y)T 7→ (x+ y, x− y, xy)T and h : R3 → R by (x, y, z)T 7→ xy2z.
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Calculate, using the Chain Rule, the directional derivative of h ◦ f : R2 → R
at a = (2,−1)T in the direction v = (1,−2)T /

√
5.

Solution Since h ◦ f is scalar-valued we normally write dv (h ◦ f) (a) =
∇ (h ◦ f) (a)•v. But∇ (h ◦ f) (a) = J (h ◦ f) (a)T so dv (h ◦ f) (a) = J (h ◦ f) (a)v.
The Chain Rule states that

J (h ◦ f) (a) = Jh
(
f(a)

)
Jf(a) = Jh(b) Jf(a)

with b = f(a). In this case b = (1, 3,−2)T . The Jacobian matrices are

Jf(a) =

 1 1
1 −1
y x


x=a

=

 1 1
1 −1
−1 2

 ,

and
Jh(b) =

(
y2z 2xyz xy2

)
x=b

=
(
−18 −12 9

)
.

Then

J (h ◦ f) (a) =
(
−18 −12 9

) 1 1
1 −1
−1 2

 =
(
−39 12

)
.

Finally,

dv (h ◦ f) (a) = ∇ (h ◦ f) (a) • v

=
1√
5

(
−39 12

)( 1
−2

)
= − 63√

5
.

This should agree with your answer to Question 17 on Sheet 3. Would you
agree that the calculations are simpler using the Chain Rule?

15. Assume F : R2 → R3 is Fréchet differentiable at q = (2, 3)T with

JF(q) =

 −1 2
2 −3
0 4

 .

Assume also that F(q) =
(

2 −1 4
)T

.

Define f : R2 → R : f(x) = |F(x)|. Prove that f is Fréchet differentiable
at q and find dfq (t) for t ∈ R2.
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Solution The function f is the composition of F and the distance function
d(y) := |y| for y ∈ R3. By assumption F is Fréchet differentiable at q, and
|...| is Fréchet differentiable everywhere, in particular at F(q). Thus by the
Chain rule f is Fréchet differentiable at q.

It is simpler to first calculate the Jacobian matrix

Jf(q) = J (d ◦ F) (q) = Jd(F(q)) JF(q) .

For y = (x, y, z)T ∈ R3,y 6= 0, we have d(y) = (x2 + y2 + z2)
1/2

so

Jd(y) =
1

d(y)

(
x y z

)
=

1

d(y)
yT .

Thus, by the assumptions in the question,

Jf(q) = Jd(F(q)) JF(q) =
1

d(F(q))
F(q)T

 −1 2
2 −3
0 4



=
1√
21

(
2 −1 4

) −1 2
2 −3
0 4


=

1√
21

(
0 23

)
.

Finally, for t = (s, t)T ∈ R2 we have

dfq(t) = 23t/
√

21.

16. A heat-seeking insect always moves in the direction of the greatest
increase in temperature. Describe the path of a heat-seeking insect placed
at (1, 1)T on a metal plate heated so that the temperature at x = (x, y)T is
given by

T (x) = 100− 40xye−r(x),

where r(x) = (x2 + y2) /10.

What if the insect starts at (3, 2)T ? Or the origin 0?

Solution The gradient vector at x ∈ R2 is

∇T (x) =

(
−40ye−r(x) + 8x2ye−r(x)

−40xe−r(x) + 8xy2e−r(x)

)
= e−r(x)8

(
−5y + x2y

−5x+ xy2

)
.
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At time t the insect is at point (x(t) , y(t))T . It will be moving in the
direction (x′(t) , y′(t))T . Being heat-seeking it will move in the direction of
the greatest increase in temperature, given by ∇T (x). Thus (x′(t) , y′(t))T =
c∇T (x) for some c > 0. Therefore the ratio of coordinates are equal, i.e.

x′(t)

y′(t)
=
−5y + x2y

−5x+ xy2
=
y (x2 − 5)

x (y2 − 5)
,

as long as y2 6= 5. Rearrange as

x x′(t)

5− x2
=
y y′(t)

5− y2
. (4)

I have written it like this for at time 0 we are told x = 1 and so 5−x2 > 0.
The same also hold for 5− y2. Integrate to get

−1

2
ln
(
5− x2

)
= −1

2
ln
(
5− y2

)
+ C,

for a constant C, or
5− x2 = A

(
5− y2

)
,

for y2 6= 5. where A = e2C . To find A plug in the starting point (1, 1)T to get
4 = 4A, so A = 1. Thus the path is x2 = y2. or x = ±y. The point (1, 1)T

does not lie on the line x = −y so the answer is x = y. To find the direction
of the line along which the insect travels look again at the gradient vector
which, at a = (1, 1)T is, ∇T (a) = e−r(a)8 (−4,−4)T . This points towards the
origin. Therefore, starting at (1, 1)T , the insect moves directly to the origin.

If the starting point is (3, 2)T then you might have a reservation in using
(4) for 5 − 32 < 0 and so ln (5− x2) may well not be defined. You could,
instead, write (4) as

−xx
′ (t)

x2 − 5
=
yy′ (t)

5− y2
.

Integrate to get

−1

2
ln
(
x2 − 5

)
= −1

2
ln
(
5− y2

)
+ C,

or
x2 − 5 = A

(
5− y2

)
.

Plugging in the starting point (3, 2)T we find A = 4 in which case

x2 + 4y2 = 25.
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So at (3, 2)T the insect starts on the path of this ellipse in the clockwise direc-

tion. (For the direction look at the signs of the components of ∇T
(

(3, 2)T
)

).

Be careful, this does not mean the insect traverses this ellipse without end
- how could it do so gaining temperature all the time? This ellipse has been
derived on the basis that x2 > 5 and y2 < 5. If either of these fails we have to

re-examine the problem. One such point on the ellipse is a =
(√

5,−
√

5
)T

.
But ∇T (a) = 0 so, at this point, the insect will not know which way to go
and presumably stop.

At the origin the gradient vector ∇T (0) is 0 so again the insect will not
know which way to go and will remain in place.
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